Paula Liliana Giraldo Gallo
Perfil
En el Laboratorio de Materiales Cuánticos, el cual dirijo, nos interesa el estudio de materiales complejos y fuertemente correlacionados, en los cuales la competencia de diferentes escalas de energía en el material da lugar a estados base exóticos. Estamos interesados en caracterizar y entender el origen de dichos estados base novedosos, así como la forma de controlar y optimizar sus propiedades por medio de la variación de parámetros físicos tales como temperatura, campo magnético, dopaje químico, presión o tensión. Algunas de las fenomenologías que comúnmente encontramos en los materiales que estudiamos, y que están asociadas a dichos estados base novedosos, son la superconductividad, la onda densidad de carga, la desproporción de valencia, separación de fases (electrónica y/o estructural), la termoelectricidad, y estados topológicos. Adicionalmente, acompañamos estos estudios con un programa de síntesis de materiales, principalmente en forma de monocristales, de la más alta calidad posible.
Cursos Recientes
- 2023
NANOTECNOLOGÍA
Primer Periodo
Licenciatura
FÍSICA II
Primer Periodo
Licenciatura
Productos Recientes
Títulos Académicos Recientes
Doctor of Philosophy in Physics
Doctorado
Leland Stanford Junior University - The Stanford University
2015
Estados Unidos
Maestría en Ciencias - Física
Maestría
Universidad De Los Andes, Colombia
2009
Colombia
Proyectos Recientes
- 2020
- Quantum criticality in charge-ordered compounds
Duración: 36 meses
PR.3.2019.6227
This project intends to determine the universal characteristics of a charge density wave quantum critical point (QCP) in the electronic phase diagram of materials. A QCP marks the point in a phase diagram of temperature-tuning parameter at which a phase transition in a material is realized at zero temperature. This project will combine material synthesis (producing compounds of the highest quality possible, in the form of single crystals, and with the possibility of designing the chemical composition of the produced materials), basic characterization through a variety of experimental techniques (X-ray diffraction, chemical composition characterization, microscopy characterization, electrical transport, magnetic and thermodynamic measurements), advanced characterization through state of the art experimental tools to unravel the nature of phase transitions (Resonant Ultrasound Spectroscopy - RUS), and measurements under extreme conditions (ultra-high magnetic fields and low temperatures), in order to establish the universal characteristics of quantum criticality associated with charge density wave ordering, and its relation with the optimization of novel electronic properties in compounds. I plan to start by exploring the following families of CDW materials: Transition metal chalcogenides (quasi-2D dichalcogenides, MX2, and quasi 1-D chalcogenides, such as MX3or MX4), bismuthate superconductors (Ba1-xKxBiO3and related) and transition metal oxide bronzes (AxMO3). In addition, this project intends to answer the same questions for the purely 2D and 1D limit in the transition metal chalcogenides family, by obtaining few-atomic layer samples and studying how their electronic properties are modified compared to the bulk samples.
Cursos
- 2023
NANOTECNOLOGÍA
Primer Periodo
Licenciatura
FÍSICA II
Primer Periodo
Licenciatura
FÍSICA II (REFORMA 202020)
Primer Periodo
Licenciatura
PROYECTO EXPERIMENTAL
Primer Periodo
Licenciatura
FÍSICA II
Segundo Periodo
Licenciatura
TERMODINÁMICA (REF. 202020)
Segundo Periodo
Licenciatura
FÍSICA II (REFORMA 202020)
Segundo Periodo
Licenciatura
- 2022
- 2021
- 2020
- 2019
- 2018
- 2017
Productos
Títulos académicos
Doctor of Philosophy in Physics
Doctorado
Leland Stanford Junior University - The Stanford University
2015
Estados Unidos
Maestría en Ciencias - Física
Maestría
Universidad De Los Andes, Colombia
2009
Colombia
Física
Título de grado
Universidad De Los Andes, Colombia
2006
Colombia
Proyectos
- 2020
- Quantum criticality in charge-ordered compounds
Duración: 36 meses
PR.3.2019.6227
This project intends to determine the universal characteristics of a charge density wave quantum critical point (QCP) in the electronic phase diagram of materials. A QCP marks the point in a phase diagram of temperature-tuning parameter at which a phase transition in a material is realized at zero temperature. This project will combine material synthesis (producing compounds of the highest quality possible, in the form of single crystals, and with the possibility of designing the chemical composition of the produced materials), basic characterization through a variety of experimental techniques (X-ray diffraction, chemical composition characterization, microscopy characterization, electrical transport, magnetic and thermodynamic measurements), advanced characterization through state of the art experimental tools to unravel the nature of phase transitions (Resonant Ultrasound Spectroscopy - RUS), and measurements under extreme conditions (ultra-high magnetic fields and low temperatures), in order to establish the universal characteristics of quantum criticality associated with charge density wave ordering, and its relation with the optimization of novel electronic properties in compounds. I plan to start by exploring the following families of CDW materials: Transition metal chalcogenides (quasi-2D dichalcogenides, MX2, and quasi 1-D chalcogenides, such as MX3or MX4), bismuthate superconductors (Ba1-xKxBiO3and related) and transition metal oxide bronzes (AxMO3). In addition, this project intends to answer the same questions for the purely 2D and 1D limit in the transition metal chalcogenides family, by obtaining few-atomic layer samples and studying how their electronic properties are modified compared to the bulk samples.