Inicio / Eventos / Seminario de Materia Condensada

Seminario de Materia Condensada

  • Holographic superconductor
    Holographic superconductor
    Universal statistics of vortices in a newborn holographic...

    Seminario de Materia Condensada

Lugar: Vía Zoom Meetings
Fecha: 2 de Febrero 2021
hora: De 2:00 pm hasta 3:00 pm

¡Participa de nuestro seminario de Materia Condensada!

 

"Universal statistics of vortices in a newborn holographic superconductor: beyond the kibble-zurek mechanism" 

 

Conferencista:                                                       

Fernando Gómez-Ruiz

Donostia International Physics Center, Spain

 

................................................................................................................................................

 

                                                                                    Hora:

                                                                                    2 PM

 

.................................................................................................................................................

 

                                                                                RESUMEN

 

Nonequilibrium phenomena are broadly acknowledged to occupy a prominent role at the frontiers of physics. The quest for signatures of universality in this arena is of paramount importance, allowing to provide a unified explanation of experimental measurements in disparate systems. The celebrated Kibble-Zurek mechanism (KZM) constitutes one of the few and precious universal paradigms at hand. It complements the adiabatic theorem predicting the mean number of excitations spontaneously generated across a phase transition. Specifically, using equilibrium properties, it predicts that the mean number of topological defects created decays with a universal power law of the ramp time.

 

In this work [1] we explore the statistics of vortices in a newborn holographic superconductor in (2+1) dimensions and show that the full counting statistics of vortices is universal. The mean-density is shown to follow the KZM power-law prediction. Fluctuations beyond the mean value are probed by low-order cumulants of the vortex number distribution, which are found to exhibit a universal power-law scaling with the quench time. The vortex number distribution is well described by a binomial distribution restricted to even outcomes by the topology of the system, making possible to probe rare events far away from equilibrium.  Large-deviations away from the mean vortex number no longer exhibit a power-law behavior and the corresponding extreme value statistics is characterized by a Weibull distribution.  

 

[1] A. del Campo, F. J. Gómez-Ruiz, Z-H. Li, C-Y. Xia, H-B. Zeng, & H-Q. Zhang. arXiv:2101.02171, (2021).

Lugar: Vía Zoom Meetings
Dirección: