UNIVERSIDAD DE LOS ANDES

Miércoles, 16 de enero, 2019 (2:00 pm a 5:00 pm)

EXAMEN DE CONOCIMIENTOS

Electrodinámica

2019-01

Duración del examen: Tres Horas

Nombre:	Código:	

Pregunta	Puntos	Nota
1	20	
2	20	
3	30	
4	30	
Total	100	

Fundamente todas sus respuestas argumentando con leyes físicas donde corresponda. Justifique todos los pasos que realice. Sea claro y concreto en su redacción. Escriba con letra clara. No se permite el uso de ayudas, fórmulas ni calculadora.

Problema 1. Potencial de una distribución finita de cargas (20 puntos)

Considere N cargas puntuales q_i (i=1,2,...,N) colocadas en los vértices de un polígono regular de N lados, inserto en una circunferencia de radio a. El polígono está en el plano xy.

- a. (10/20). Obtenga el potencial $\phi(r)$ para puntos dentro y fuera de la circunferencia.
- **b.** (10/20). Considere que todas las cargas son iguales $(q_i = q)$ y analice el caso límite cuando $N \longrightarrow \infty$.

Problema 2. Potencial vector para un alambre infinito de corriente (20 puntos)

 $\mathbf{a.(13/20)}$. Evaluar el potencial vector $\vec{A}(r)$ para un alambre rectilíneo infinito con corriente I, en coordenadas cartesianas. Asuma $\vec{J} = \hat{k}I\delta(x')\delta(y')$.

b.(7/20). Obtener el campo magnético \vec{B}

Problema 3. Haz polarizado. (30 puntos)

Un haz de radiación electromagnética polarizada plana, de frecuencia ω , amplitud de campo eléctrico E_0 , y polarización x, incide normalmente sobre una región del espacio que contiene un plasma de baja densidad ($\rho = 0$, n_0 electrones por unidad de volumen).

- a. (10/30). Calcule la conductividad como función de la frecuencia.
- **b.** (10/30). Usando las ecuaciones de Maxwell determine el índice de refracción dentro del plasma.
- c. (10/30). Calcule y grafique la magnitud del campo eléctrico E como función de la posición en la región del borde del plasma.

Problema 4. Partícula en un campo electromagnético (30 puntos)

Se libera una partícula de carga q y masa en resposo m, con velocidad inicial cero, en una región del espacio que contiene un campo eléctrico E en la dirección y, y un campo magnético B en la dirección z.

- a. (10/30). Describa las condiciones necesarias para la existencia de un marco de Lorentz en el que (1) E = 0 y (2) B = 0.
- **b.** (10/30). Describa el movimiento que se daría en el marco original en el caso en que se alcance la condición (1) del numeral (a).
- c. (10/30). Encuentre el momentum como función del tiempo en el marco con B=0, para el caso (2) del numeral (a).

Muchos éxitos!

Soluis Electrodi-anica 2019-1

1)
$$q = \int g(r) g(r,r) dv'$$
. Vermos que $g(r) = \int g(r,r) dv'$. $g(r) = \int g(r,r) dv'$. $g(r,r) dv'$. $g(r,r) = \int g(r,r) dv$

(a)
$$r = \sqrt{\frac{2\pi}{N}}$$

(b) $r = \sqrt{\frac{2\pi}{N}}$

(c) $r = \sqrt{\frac{2\pi}{N}}$

(d) $r = \sqrt{\frac{2\pi}{N}}$

(e) $r = \sqrt{\frac{2\pi}{N}}$

(f) $r = \sqrt{\frac{2\pi}{N}}$

(g) $r = \sqrt{\frac{2\pi}{N}}$

$$\frac{1}{2} \int_{0}^{\infty} \frac{d(x'-a)}{dx'-a} re^{x} dx' = \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \frac{1}{2$$

B) Para
$$y > a > \int_{0}^{\infty} \int_{0}^{x} \int_{0}^{x$$

b) Si N-DOD 5 Fi= q cod e (poligono se viele une espoire.

En est coso, e | têmino
$$\frac{5}{i}$$
 qi e i m $(\Phi-2\pi i)$ se pulte re est;

$$= \left(\frac{5}{2} \text{ qi e in } \frac{2\pi i}{N}\right) e^{i m \Phi} = 1 \text{ têmino } \left[\frac{5}{2} \text{ qi e}^{-i} \left(\frac{2\pi m i}{N}\right)\right] \text{ to venos}$$

$$= \left(\frac{5}{2} \text{ qi e in } \frac{2\pi i}{N}\right) e^{-i \frac{2\pi m}{N}}$$

$$= \left(\frac{N}{2} \left(\Delta N\right) e^{-i \frac{2\pi m}{N}}\right) e^{-i \frac{2\pi m}{N}}$$

$$= \frac{1}{2} \left(\frac{N}{2} \left(\Delta N\right) e^{-i \frac{2\pi m}{N}}\right) e^{-i \frac{2\pi m}{N}}$$

$$= \frac{1}{2} \left(\frac{N}{2} \left(\Delta N\right) e^{-i \frac{2\pi m}{N}}\right) e^{-i \frac{2\pi m}{N}} = \frac{N}{2} \Delta N$$

$$= \frac{1}{2} \left(\frac{N}{2} \left(\frac{N}{2} \left(\frac{N}{2}\right) e^{-i \frac{2\pi m}{N}}\right) e^{-i \frac{2\pi m}{N}} = \frac{N}{2} \Delta N$$

$$= \frac{1}{2} \left(\frac{N}{2} \left(\frac{N}{2}\right) e^{-i \frac{2\pi m}{N}}\right) e^{-i \frac{2\pi m}{N}} = \frac{N}{2} \Delta N$$

Sea
$$\alpha = \frac{2\pi i}{N}$$
 $\Delta \alpha = \frac{2\pi}{N} \left((i+i)-i \right) = \frac{2\pi}{N} \Delta N$ $\Delta \alpha = \frac{N}{2\pi} \Delta \alpha$

Sea $\alpha = \frac{2\pi i}{N} \Delta \alpha = \frac{2\pi}{N} \left((i+i)-i \right) = \frac{2\pi}{N} \Delta N$ $\Delta \alpha = \frac{N}{2\pi} \Delta \alpha$
 $\Delta \alpha = \frac{2\pi}{N} \left((i+i)-i \right) = \frac{2\pi}{N} \Delta N$ $\Delta \alpha = \frac{N}{2\pi} \Delta \alpha$
 $\Delta \alpha = \frac{2\pi}{N} \left((i+i)-i \right) = \frac{2\pi}{N} \Delta N$ $\Delta \alpha = \frac{N}{2\pi} \Delta \alpha$

Sea $\alpha = \frac{2\pi i}{N}$ $\Rightarrow \lambda$ $\alpha = 2\pi (i - iN)$ Asi, $\alpha = 2\pi (i - iN)$ Asi, $\alpha = 2\pi (i - iN)$ $\Rightarrow \alpha = 2\pi (i -$

Se converte en
$$e^{-i\frac{2\pi m}{N}} \cdot \int_{0}^{2\pi} \frac{N}{2\pi} e^{-imd} dd = e^{-i\frac{2\pi m}{N}} \cdot \frac{N}{2\pi} 2\pi dm$$
 (2)
$$= e^{-i\frac{2\pi m}{N}} \cdot \int_{0}^{N} \frac{N}{2\pi} e^{-imd} dd = e^{-i\frac{2\pi m}{N}} \cdot \frac{N}{2\pi} 2\pi dm$$

$$\frac{1}{2\pi^{2}} = \frac{1}{2\pi^{2}} \int \frac{d(x')}{d(y')} \int \frac{d(y')}{d(y')} d(y') d(y')$$

$$\overline{A}(\overline{r}) = \frac{\overline{I} \hat{k}}{\overline{T} c} \int \frac{d(nz) e}{(kz^2 + w_3^2 + w_2^2)} \frac{dkx dwy dwz}{c}$$

$$=\frac{1}{\pi c}\int_{0}^{\infty}\frac{e^{i\kappa_{x}x}+i\kappa_{y}y}{k_{x}^{2}+i\kappa_{y}^{2}}=\frac{1}{\pi c}\int_{0}^{\infty}\int_{0}^{\infty}\frac{e^{i\kappa_{x}x}+i\kappa_{y}y}{k_{x}^{2}+i\kappa_{y}^{2}}=\frac{1}{\pi c}\int_{0}^{\infty}\int_{0}^{\infty}\frac{e^{i\kappa_{x}x}+i\kappa_{y}y}{k_{x}^{2}}$$

$$=\frac{i\pi}{\pi c}\int_{0}^{\infty}\frac{1}{i\kappa}\int_{0}^{\infty}\frac{1}{i\kappa}\int_{0}^{\infty}\frac{e^{i\kappa_{y}x}+i\kappa_{y}y}{k_{y}^{2}}=\frac{1}{\pi c}\int_{0}^{\infty}\int_{0}^{\infty}\frac{1}{i\kappa}\int_{0}$$

$$= \frac{2 \operatorname{Th}}{c} \int_{0}^{\infty} \operatorname{Jo}(kg) dk \qquad \text{pure } \operatorname{Jm}(k) = \frac{1}{2 \operatorname{Ti}} \int_{0}^{2 \operatorname{Ti}} \operatorname{two}(kg) - \frac{1}{2 \operatorname{Ti}} \int_{0}^{2 \operatorname{Ti}} \operatorname{two}(kg) dk$$

$$= \frac{2 \operatorname{Th}}{c} \operatorname{Im}(kg) \int_{0}^{\infty} \operatorname{Jo}(kg) dk \qquad = 2 \operatorname{Th} \operatorname{Jo}(3 \operatorname{Sd}_{2}) \operatorname{No}(\frac{3 \operatorname{No}(kg)}{2})$$

$$= \frac{2 \operatorname{Th}}{c} \operatorname{Im}(kg) \int_{0}^{\infty} \operatorname{Jo}(kg) dk \qquad = 2 \operatorname{Th} \operatorname{Jo}(3 \operatorname{Sd}_{2}) \operatorname{No}(\frac{3 \operatorname{No}(kg)}{2})$$

$$= \frac{2 \operatorname{Th}}{c} \operatorname{Im}(kg) \int_{0}^{\infty} \operatorname{Jo}(kg) dk \qquad = 2 \operatorname{Th} \operatorname{Jo}(3 \operatorname{Sd}_{2}) \operatorname{No}(\frac{3 \operatorname{No}(kg)}{2})$$

$$= \frac{2 \operatorname{Th}}{c} \operatorname{Im}(kg) \int_{0}^{\infty} \operatorname{Jo}(kg) dk \qquad = 2 \operatorname{Th} \operatorname{Jo}(3 \operatorname{Sd}_{2}) \operatorname{No}(\frac{3 \operatorname{No}(kg)}{2})$$

$$= \frac{2 \operatorname{Th}}{c} \operatorname{Im}(kg) \int_{0}^{\infty} \operatorname{Jo}(kg) dk \qquad = 2 \operatorname{Th} \operatorname{Jo}(3 \operatorname{No}(kg)) \operatorname{Jo}(3 \operatorname{No}(kg))$$

$$= \frac{2 \operatorname{Th}}{c} \operatorname{Jo}(3 \operatorname{No}(kg)) \int_{0}^{\infty} \operatorname{Jo}(kg) dk \qquad = 2 \operatorname{Jh} \operatorname{Jo}(3 \operatorname{No}(kg)) \operatorname{Jo}(3 \operatorname{No}(kg))$$

$$= \frac{2 \operatorname{Th}}{c} \operatorname{Jo}(3 \operatorname{No}(kg)) \int_{0}^{\infty} \operatorname{Jo}(kg) dk \qquad = 2 \operatorname{Jh} \operatorname{Jo}(3 \operatorname{No}(kg)) \operatorname{Jo}(3 \operatorname{No}(kg))$$

$$= \frac{2 \operatorname{Th}}{c} \operatorname{Jo}(3 \operatorname{No}(kg)) \int_{0}^{\infty} \operatorname{Jo}(kg) dk \qquad = 2 \operatorname{Jh} \operatorname{Jo}(3 \operatorname{No}(kg)) \operatorname{Jo}(3 \operatorname{No}(kg))$$

$$= \frac{2 \operatorname{Th}}{c} \operatorname{Jo}(3 \operatorname{No}(kg)) \operatorname{Jo}(3 \operatorname{No}(kg)) \operatorname{Jo}(3 \operatorname{No}(kg))$$

$$= \frac{2 \operatorname{Th}}{c} \operatorname{Jo}(3 \operatorname{No}(kg)) \operatorname{Jo}(3 \operatorname{No}(kg)) \operatorname{Jo}(3 \operatorname{No}(kg))$$

$$= \frac{2 \operatorname{Th}}{c} \operatorname{Jo}(3 \operatorname{No}(kg)) \operatorname{Jo}(4 \operatorname{No}(kg)) \operatorname{Jo}(4 \operatorname{No}(kg))$$

$$= \frac{2 \operatorname{Th}}{c} \operatorname{Jo}(3 \operatorname{No}(kg)) \operatorname{Jo}(4 \operatorname{No}(kg))$$

$$= \frac{2 \operatorname{Th}}{c} \operatorname{Jo}(3 \operatorname{No}(kg)) \operatorname{Jo}(4 \operatorname{No}(kg))$$

$$= \frac{2 \operatorname{Th}}{c} \operatorname{Jo}(4 \operatorname{No}(kg))$$

$$= \frac{2 \operatorname{Th}}{c} \operatorname{Jo}(4 \operatorname{No}(kg))$$

$$= \frac{2 \operatorname{Th}}{c} \operatorname{Jo}(4 \operatorname{No}(kg))$$

$$= \frac{2 \operatorname{Jh}}{c} \operatorname{Jo}(4 \operatorname{No}(kg))$$

$$= \frac{2 \operatorname{Jh}}{c} \operatorname{Jo}(4 \operatorname{Jo}(kg))$$

b) (
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$

$$\int_{0}^{\infty} \cos k \, dk = \lim_{\alpha \to 0} \int_{0}^{\infty} \frac{\partial -\alpha k}{\partial x} \sin k \, dk = \lim_{\alpha \to 0} \frac{\Delta}{\lambda^{2} + \alpha^{2}} = \frac{1}{\lambda^{2}}$$

$$D = \frac{i}{x} =$$

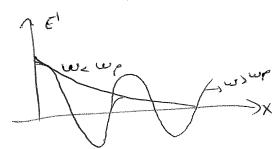
$$=\frac{\hat{e}_{\phi}I}{\pi(\hat{S})}.2\pi + \hat{\partial}\left[\vec{\hat{B}}(\vec{r}) - \frac{2I}{\hat{g}}(\vec{e}_{\phi})\right]$$

(3) a) Como el plasma es de baja dusidad, se punte con 9 sideror el espacio como un espacio libre, con permitor del Eu y permeabilidad Mo. Las ecuaciones de Marxiell son $\vec{\nabla} \times \vec{\epsilon}' = -\frac{\vec{\partial} \vec{B}'}{\vec{\partial} t}$ $\vec{\nabla}.\vec{\epsilon}' = \frac{g}{\omega} = 0$ entonces. DYB' = NOT + TO JE ブ・方:0 ler leg de Ohm es j=-roej = oë, donde i es la relocadel provedio de los electrones en el plasma. Pore vecc, la majoritica majoritica de la fuerta gobre un electrón es muchos menor que la puerta eléctria y punte ser despreciado. Entenas, la ecuación de fuerta elicano 0 1 electrón es: $\frac{d\vec{v}}{dt} = -\frac{e}{m} \vec{e}^{i}$ Como É'= Eo a le juit en el estado estacionerio. Per la tanto, equilibrio es 7: ne $\vec{z} = \frac{e}{m\omega^2} \vec{z} = \frac{\vec{z}}{\vec{z}} = -\frac{ie}{\omega m} \vec{z} = \frac{noe^2}{m\omega} \vec{z}$ $-D \left[0 = i \frac{n\omega^2}{n\omega} \right]$ b) vector polaritaes del plesme es: P=-noet = - roe? E'. Asi, el desplatamiento elichito sud: D= EE' = EE' + D. As!, la constant dielectrica del plasma U = EU = 0es dede por : $E = E_0 + \frac{C}{E} = E_0 - \frac{noe^2}{m\omega^2} + \frac{E}{E_0} = 1 - \left(\frac{\omega p}{\omega}\right)^2$ Con $\omega p = \sqrt{\frac{noe^2}{kor}}$, la llomat Francia aguler del plasme.

(1) Considerenos la onda primaria Eo = Eo e que de la = co Si ella incide sobre la protezade (plasma normalment, la onda dutos del plasma también será polaritada plana, con amplitud Ed'= 2EO, con kl= w n = kn el himodronda. Así,

$$|\vec{E}| = \frac{2E0}{1+r} e^{i(unt-we)} \hat{i}$$

Notenes que pour woup, ny un son reales y É'se mapage conocuen 5: we we, ny un son imaginard y El sakud exponental.



(4) a) Sea & el sistema o moras del laborationo y & el grove de reference mont, con ne locaded relative

& E termos: E: Eq. 18 = 376

Las transformaciones de leventz nos der el compo electrorgietres en El así: Ex= Ex=0 Ey= 8 (Ey-VBz)=8 [E-VB]

Bx = Bx = 0 By = 3 (By = 5 E2) = 0 B21= 8(B2- 5 6) = 8 (B- 5 E)

(1) Pora E'=0 en E' Se requiere que E-VB=0, S (6)

U= E. Peno como U EC, Se requiere que [E S CB] (2) Por 6'=0 en ξ' , se requier que $B-\frac{\nabla}{c^2}E=0$ $\& \nabla=\frac{c^2B}{E}$ D [co ≤ E) b) S: E'=0 el movimiento de la corga g en E' Será desente por: $\frac{d}{dt'} \left(\frac{mu'}{\sqrt{1-u^2/c^2}} \right) = gu' \times B' (A)$ $\frac{d}{dt'} \left(\frac{mu'}{\sqrt{1-u^2/c^2}} \right) = gu' \times B' (A)$ $\frac{d}{dt'} \left(\frac{mu'}{\sqrt{1-u^2/c^2}} \right) = gu' \times B' (A)$ do-de u'es la velocided de la portrada en él. La cc @ implica que $\frac{mc^2}{\sqrt{-u^2/2}}$ = ate. ± 0 u' = ate ± 0 solo cando la la verboridad de la portrada. Como la Veloudadinical en E es 0, en E', tiso, será dade por: $u_{x}^{1} = \frac{u_{x} - \overline{J}}{1 - \frac{u_{x}}{2}} = -\overline{J}$ $u_{x}^{1} = \frac{u_{x}}{\sqrt{1 - \frac{u_{x}}{2}}} = 0$ $u_{x}^{1} = \frac{u_{x}}{\sqrt{1 - \frac{u_{x}}{2}}} = 0$ $\exists lb' = -b' = -\frac{E}{3}$. Así, la majorated de la velocadal de la porticula sua sienpre u'= E, y teremos que: $\sqrt{1-u^2/u^2} = \sqrt{B^2(2-E^2)} = cde$ Asi, lo ecucies A Sereduce a $u' = \frac{4}{m} \sqrt{1 - u'^2 k^2} u' \times B'$ De las écraciones de transformación por à teremos: $\vec{B}' = \frac{1}{C} \sqrt{R^2c^2 - E^2t}$ y de la earant. © Scottien:

Ux = wus (1) us = -wux (e) uz = 0 (Donde $\omega = \frac{qB'\sqrt{1-u^2/c^2}}{\sigma} = \frac{q(c^2B^2-E^2)}{c^2mB}$ La escación De muestra que un = cte es como uz'= o ert'=0, Uz'=0 ertodo tiempo. les ecuaciones & y(@xi) dan: ux + i uy = -iw (ux + i uy) 6 lando 3 = ux'+iuy', 3 = -iw? La solución a esta eccación es: } = -uo'e icut' Uy'= Ud (w) (wt'); uy'=-ud su (wt'), con (w)= cte. Como Ud= E en 11=0, teremos que: ux1= E cos (wti); uy1= - E su (wti) Estas accasiones permiter ver que la portante tendré un mo vimiato avado en el plano xy, con un rado dedo por $R = \frac{ul}{w} = \frac{E}{Bw} = \frac{c^2 mE}{9(l^2 R^2 - E^2)}$ Por otro leulo, en E, como la contacerón de Lorertz es en direcerón x, la

Sibita es una elipse an el eje menor a la largo del eje X.

(C) Tomeros un morco de reperencia & l'en el cual B'=0.

Sea p' el momentum de la particula: la ecuación de sea p' el momentum de la particula: la ecuación de movimento será: de = 9 E'. La contidel E'_c'B'

es u invariante lorentz.

IN Z'= VEZ-cZBZ J. La ecución de movimiento O tiene entones las componetes así;

$$\frac{dex'}{dt'} = \frac{de^2}{dt'} = 0 \quad (9) \quad \frac{des'}{dt'} = 9 \sqrt{e^2 - c^2 e^2} \quad (1)$$

Les ecuación 9 muestre que tanto Px' como Pri son etes a La Portícule está inicialmente en reposo en E y su velocidal es opuesta a la d sl; $u_{ol} = -\frac{c^2 b}{\epsilon}$, como se no es a).

la ec. 6) da Py (t')= 9 VE2-c2B2t', donde & Use la condition initial log = 0 en ti=0.

Universidad de los Andes, Departamento de Física, **Código**Examen de conocimientos doctorado Mecánica Clásica, Enero 2019 **Nombre**

Antes de empezar tenga en cuenta:

- Fundamente todas sus respuestas argumentando con leyes físicas donde corresponda
- Explique claramente sus suposiciones. Justifique todos los pasos que realice.
- Muestre los detalles de su trabajo
- Sea claro y concreto en su redacción. Escriba con letra clara.
- No se permite el uso de ayudas, fórmulas o calculadora-estime lo mejor que pueda manualmente.
- pt es una abreviación de puntos. Enumere sus páginas

Problema 1. Barco varado (20pt)

El capitán de un barco (M=1000kg sin el ancla) en un mar sin viento ni corriente sobre la línea ecuatorial decide usar el ancla (m=200kg) como medio de propulsión, subiéndola hasta arriba del mástil (h=20m).

- a) ¿Porqué se moverá el barco? (5 pt)
- b) ¿En qué dirección se moverá? Especifique el punto cardinal (6 pt)
- c) Suponiendo que no hay resistencia del agua, ¿qué tan rápido se moverá con respecto al mar? (9pt)

Problema 2. Estrellas múltiples (20pt)

Suponga que tiene estrellas múltiples rotando alrededor de ellas mismas separadas por L.

- a) Cuál es el periodo de una estrella binaria con dos estrellas de masas iguales?
- b) Cuál es el periodo de una estrella binaria con dos estrellas de masa distinta?
- c) Cuál es el periodo de una triple-estrella con tres estrellas de la misma masa en un triángulo equilátero? Recuerde que la distancia al centro en un triángulo equilátero es 1/V3 del lado L.

Exprese sus resultados en términos de G, L y las masas de las estrellas (M₁, M₂, etc...)

Problema 3. Oscilador (6 x 5pt)

El Lagrangiano de un movimiento en una dimensión está dado por:

$$L = e^{\gamma t} \left(\frac{m\dot{q}^2}{2} - \frac{kq^2}{2} \right)$$

Donde y, m, k son constantes positivas.

- a) Encuentre la ecuación de Lagrange para este movimiento
- b) Encuentre las constantes de movimiento, si las hay
- c) Describa en detalle el movimiento bajo las distintas condiciones posibles

Suponga que se hace una transformación a otro sistema generalizado de coordenadas $S=e^{\gamma t/2}q$

Universidad de los Andes, Departamento de Física, Código Examen de conocimientos doctorado Mecánica Clásica, Enero 2019 Nombre

- d) Exprese el Lagrangiano en términos de S.
- e) Encuentre la ecuación de Lagrange
- f) Encuentre las constantes de movimiento, si las hay
- g) ¿Cuál es la relación entre las dos soluciones en las distintas coordenadas?

Problema 4. Hamiltoniano clásico de van der Waals (3 x 10pt)

La interacción entre dos moléculas iguales de gas inerte de masa m se puede escribir como:

$$U(r) = -\frac{2A}{r^6} + \frac{B}{r^{12}}$$

donde A,B > 0, y r = $|\mathbf{r}_1 - \mathbf{r}_2|$ es la separación entre las dos moléculas de gas que son idénticas.

- a) Encuentre el hamiltoniano del sistema de dos átomos en 3D. (son 8 términos) (4pt)
- b) Encuentre el valor del estado clásico mínimo de energía del sistema. (2pt)
- c) Si la energía del sistema el ligeramente mayor al estado en b), y suponiendo que la energía se concentra en el movimiento en la coordenada r, ¿cuál(es) es/son la(s) posible(s) frecuencia(s) de movimiento del sistema en función de A,B y m la masa de las moléculas? (4pt)

Termo y Mecánica shadatia.

Slución.

2018-1

Problema 1:
a) Cas pentreula no interaction =
$$3 = (3p)^n$$

 $2p = \xi e^{-\frac{pE}{k_3T}} = e^{-\frac{k_3B}{k_3T}} + e^{-\frac{k_3B}{k_3T}}$

_ si consi denamos Gibbs, seria * 1

$$= \frac{\partial}{\partial f^{S}} \ln \left(e^{+\frac{1}{4}} e^{-\frac{1}{4}} \right)^{n} \qquad d = \ln f^{S} \int_{a}^{b} \int_{a}^{b} \ln \left(f(x) \right) dx = \int_{a}^{b} \ln \left(f(x) \right) dx$$

5 = hs (ln (e + e d) - n no B B tamb(d))

= ho in (lange tet) - a tamb(d))

b) proceso adiabatica = s sue countria. s depende de a = di=df

() $\frac{h_0B_i}{25T_i} = \frac{h_0B_i}{h_0T_e} = \frac{10^{-2} \text{ x}}{B_i} = \frac{10^{-2} \text{ x}}{10^{-2} \text{ x}} = \frac{10^{$

Solución Termo y Mecánica Estadás tica

Pava =
$$P_B V_B$$

$$P_B = \frac{P_A V_A}{V_B}$$

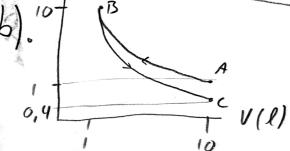
$$= \frac{1 \times 10}{1} = 10 \text{ at m.}$$

- para la expansión adiabática:

$$PV^{\delta} = cst$$
 dende $\delta = \frac{cp}{c_{V}} = \frac{l+z}{l}$

$$P_c = P_B \left(\frac{V_B}{V_c} \right)^{\gamma}$$

$$P_{c}^{\text{mono}} = 10 \left(\frac{1}{10}\right)^{\frac{5}{3}} = 10^{-\frac{23}{3}} \text{ atm}$$



- expansión:
$$8 = 5 + 2$$

$$Pc = 10(1)^{\frac{7}{5}} = 7 = 7$$

$$= 16 - 2/5 atm$$

d). mayor para el monoatómico D

Podolina 3. gas de Polonis D V, T a) $\mu=0$ dado que la labores no se conservan. M= (2F) TIV =0 b) eshadistion de Bose-Einstein. NLT? N= Se de de m=0 de stades. $l = \frac{8\pi}{h^3} V \rho^2 = V \frac{\omega^2}{17c3} du$ de la lles. pare gas de folones. =>N= / 8TT V. P2 dp $=\frac{8\pi V}{6^3} \left(\frac{k_3 \tau}{C} \right)^2 d^2 \cdot \left(\frac{k_4 \tau}{C} \right) dd$ P= hsTd $= \frac{8\pi V}{4} \left(\frac{h_s \tau}{c}\right)^3 \sqrt{\frac{\lambda^2 ds}{c^2}} \sqrt{T}.$

derivación dessidad de shades fobors.

A = # ebudos Abel = N

al ynalque on el gos de heruni, con han estrede:

 $N = (2)(\frac{1}{6}) \frac{y}{3} \pi R^3$ donde

 $R = [n_x^2 + h_y^2 + h_z^2] = 2C = 2EC$ 2 polarizations Conditions "back" E = hc = 1

E=4c =5 1=4c 2 polarizacions

, So'to solores of de n, dedo que ho y h- son el misus a hodo. de energia.

=) N= = 4 T (2 (E) $=\frac{877}{3} L^3 \left(\frac{\epsilon^3}{4c}\right)$

=> A = 8T/(E) (E).

donsided de estados = d (# atelo / 120), l3

pero en monto $P(p) = \frac{d}{dp} \left(\frac{877}{3} \left(\frac{p}{h} \right)^3 \right) = 877 \frac{p^2}{h^3} \cdot V$.

()
$$\frac{E}{V} = \int_{0}^{A} \rho(w) dw$$

$$= \int_{0}^{A} \frac{dw}{\pi^{2}c^{3}} \frac{dw}{e^{2w}} dw$$

$$= \int_{0}^{A} \frac{dw}{\pi^{2}c^{3}} \frac{dw}{c^{2}} dw$$

$$= \int_{0}^{A} \frac{dw}{\pi^{2}c^{3}} \frac{dw}{c^{3}} dw$$

$$= \int_{0}^{A} \frac{dw}{\pi^{2}c^{3}} dw$$

$$= \int_{0}^{A} \frac{dw}{\pi^{2}c^$$

$$= \frac{\overline{E}}{V} = \sqrt{\left(\frac{h_{s} \Gamma}{\hbar}\right)^{3}} \frac{0.3^{2}}{\Gamma^{2} c^{3}} \cdot \left(\frac{h_{s} \Gamma}{\hbar}\right) \frac{h}{e^{2} - 1} ds$$

$$= \left(\frac{h_{s} \Gamma}{\hbar}\right)^{4} \cdot \frac{h}{\Gamma^{2} c^{3}} \int_{c^{2} - 1}^{c^{3}} ds$$

$$= \frac{h_{s} \Gamma}{\hbar} \int_{c^{2} - 1}^{4} ds$$

Problem 4 - shay muchas maners de resolve a) 41= -5 E S:5; - M. Ho ZS:

PUI

par el spin i

apreximento la contribución regolazana S; por samala promedio

$$E_{mr}(s_i) = -Ms_i - Js_i \stackrel{\text{var}}{\leq} (s_i)$$

$$m = 1 \stackrel{\text{e}}{\leq} (s_i)$$

entones AVIII

(6)
$$\frac{P(S_j)}{E} = \frac{e^{-\beta E_{ne}(S_j)}}{E^{\beta E_{ne}(S_j)}} = \frac{e^{\beta E_{ne}(S_j)}}{e^{\beta E_{ne}(S_j)}}$$

(6) adma ser junt a Okos en arribe

con lo que m= tanh (BuoH+BJmp) made Ho = 0 = 1 m= tanh (B Jmp)

pendiente 1 M=0 s solución. y hay otras 2 soluciones mando la pendiente es > 1 pona un=0.

la pardientes: d tanh 35 mp = 1 (35P) | m=0 cosh2 ps sup | m=0

= BJP lation tica sembones cuardo porp=1 $P = k_s T_c$ $T_c = \frac{PJ}{k_s}$

$$m = tanh (T_{cm})$$
e Handiendo tanh $x = x - \frac{x^{3}}{3} + ...$

tanh
$$(T_{c} m) = tanh (PJ m) = tanh (JmPB)$$

$$m_0 = \beta J m_0 \rho - \left(\beta J m \rho\right)^3 + \dots$$

$$\frac{d}{dt} = \pm \frac{\sqrt{3}}{\sqrt{T_c}} \left(1 - \frac{T}{T_c} \right)^{\frac{1}{2}}$$

$$\frac{1}{2} + \frac{\sqrt{3}}{\sqrt{T_c}} \left(1 - \frac{T}{T_c} \right)^{\frac{1}{2}}$$

Ph. D. Qualifiers Exam, QUANTUM MECHANICS (2019-I) Total marks 100

I(25 marks)

- (i) For operators A, B, C, prove that, [AB, C] = A[B, C] + [A, C]B and find the commutator $[x, p_x]$.
- (ii) Find an expression for the time derivative of the expectation value

$$\frac{d}{dt}\langle x\,p_x\rangle$$

where x and p_x are the position and momentum operators. The answer should be in terms of $\langle [\mathcal{H}, xp_x] \rangle$

(remember that \mathcal{H} is a Hermitian operator and $(\mathcal{H}\Psi)^* = \Psi^*\mathcal{H}$

II(15 marks)

Show that in case of stationary states, the virial theorem, namely,

$$\langle 2T \rangle = \left\langle x \frac{dV}{dx} \right\rangle$$

follows.

III(30 marks) Using the representation,

$$x = \sqrt{\frac{\hbar}{2m\omega}} (a + a^{\dagger}), \quad p = i\sqrt{\frac{m\hbar\omega}{2}} (a^{\dagger} - a),$$

where a, a^{\dagger} are annihilation and creation operators having the properties

$$a|n\rangle = \sqrt{n}|n-1\rangle$$

$$a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$$

find

$$\langle \Delta x^2 \rangle_n \langle \Delta p^2 \rangle_n$$

for a one-dimensional harmonic oscialltor in the state $E_n = (n + 1/2)\hbar\omega$.

IV(30 marks) Consider the Dirac equation in one dimension

$$H\psi = i\hbar \frac{\partial \psi}{\partial t} \,,$$

where

$$H = c\alpha p_z + \beta mc^2 + V(z) = c\alpha \left(-i\hbar \frac{\partial}{\partial z}\right) + \beta mc^2 + V(z)$$

where

$$\alpha = \begin{pmatrix} 0 & \sigma_3 \\ \sigma_3 & 0 \end{pmatrix}$$

$$\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\beta = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$$

$$\sigma = \begin{pmatrix} \sigma_3 & 0 \\ 0 & \sigma_3 \end{pmatrix}$$

I being the 2×2 unit matrix.

Show that σ commutes with H and use the result to show that the onedimensional Dirac equation can be written as two coupled first order differential equations. $\sqrt{}$

Salution Examen de Conocimiento 2019-1

I. (i)
$$[AB,C] = ABC - CAB$$

$$= A(BC-CB) + (AC-CA)B$$

$$= A[B,C] + [A,C]B$$

$$= A[B,C] + [A,C]B$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial x} - ih \frac{\partial f}{\partial x} (n+1)$$

$$= x ih \frac{\partial f}{\partial$$

H is Hermitian so (HY) = 4+H d (n bn) = i fy [Hnbn-xbnH] y dn = i fy* [H, xpn] Y dn = $i < [H, <math>n \neq n]$ $(II) \quad [H, x \nmid n] = - [x \nmid n, H]$ $H = \frac{h^2}{2m} + V \qquad \left[x \, h_x, \, H \right] = x \left[h_n, \, H \right] + \left[x, \, H \right] h_n$ En commutes with for and n with V(21) Hence, $[n \nmid n, H] = n \left[\nmid n, V \right] + \left[n, \frac{\nmid n}{zm} \right] \nmid n$ Mor $\left(2x, \frac{p_n^2}{2m}\right) = 2ih p_n$ $= 2ih p_n$ $= -ih ndV + 2ih p_n$ = -ih ndV $= \frac{1}{2} \frac{d(npn)}{dt} = \frac{2(\frac{pn}{2}) - n \frac{dV}{dn}}{2}$ For stationary states the left hand side is guo $= \frac{1}{2} \frac{dV}{dn}$

$$x = \sqrt{\frac{t}{2m\omega}} (a+a^{\dagger}) \qquad \Rightarrow = i\sqrt{\frac{mt\omega}{2}} (a^{\dagger}-a)$$

$$a|n\rangle = \sqrt{n}|n-1\rangle$$

$$a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$$
Using these operators, we have
$$\langle n|x|n\rangle = \sqrt{\frac{t}{2m\omega}} \langle n|a+a^{\dagger}|n\rangle$$

$$= \sqrt{\frac{t}{2m\omega}} \sqrt{n} (n|n-1) + \sqrt{n+1} (n|n+1)$$

$$= \sqrt{\frac{t}{2m\omega}} \sqrt{n} (n|n-1) + \sqrt{n+1} (n|n+1)$$

$$= \frac{t}{2m\omega} \sqrt{n} (\sqrt{n}(n|a+a^{\dagger}|n-1) + \sqrt{n+1} (n|a+a^{\dagger}|n+1))$$

$$= \frac{t}{2m\omega} \sqrt{n} (\sqrt{n}(n-1) + \sqrt{n+1} + \sqrt{n+1} + \sqrt{n+1})$$

$$= \frac{t}{2m\omega} \sqrt{n} \sqrt{n} (n|n) + \sqrt{n+1} \sqrt{n+2} + \sqrt{n+1} \sqrt{n+2}$$

$$= \frac{t}{2m\omega} (2n+1)$$
Similarly $\langle n|p|n\rangle = 0$, $\langle n|p^2|n\rangle = \sqrt{n+2}$

$$= \frac{t}{2m\omega} (2n+1)$$

$$= \frac{t}{2m\omega} (2n+1)$$

$$= \frac{t}{2m\omega} (2n+1)$$

$$= \frac{t}{2m\omega} (2n+1)$$

4/
$$(\Delta p^{2})_{n} = \langle p^{2} \rangle_{n} - \langle p \rangle_{n}^{2} = \frac{m \hbar \omega (2n+1)}{2}$$

 $= \partial (\Delta x^{2})_{n} \langle \Delta p^{2} \rangle_{n} = \hbar^{2} (n + \frac{1}{2})^{2}$

$$\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + \beta mc^{2} + \sqrt{2}$$

$$+ C \propto \beta_{2} + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^{2} + \sqrt{2}$$

$$= C \propto \left(-i \frac{1}{\sqrt{2}}\right) + \beta mc^$$

To show that
$$\sigma$$
 commutes with H :
$$\begin{bmatrix} \sigma_{1} \times J = \begin{pmatrix} \sigma_{3} & 0 \\ 0 & \sigma_{3} \end{pmatrix}, \begin{pmatrix} \sigma_{3} & 0 \\ 0 & \sigma_{3} \end{pmatrix}, \begin{pmatrix} \sigma_{3} & 0 \\ 0 & \sigma_{3} \end{pmatrix} = 0$$

$$\begin{bmatrix} \sigma_{1} \times J = \begin{pmatrix} \sigma_{3} & 0 \\ 0 & \sigma_{3} \end{pmatrix}, \begin{pmatrix} \sigma_{3} & 0 \\ 0 & \sigma_{3} \end{pmatrix}, \begin{pmatrix} \sigma_{3} & 0 \\ 0 & -\sigma_{3} \end{pmatrix} = 0$$

$$\begin{bmatrix} \sigma_{1} \times J = \sigma_{3} & \sigma_{3} \\ \sigma_{3} & \sigma_{3} \end{pmatrix}, \begin{pmatrix} \sigma_{3} & \sigma_{3} \\ \sigma_{3} & \sigma_{3} \end{pmatrix} = 0$$

There,
$$[6, H] = [6, c \times p_z + \beta mc^2 + V]$$

= $c(6, x) p_z + [6, \beta] mc^2 = 0$

Since [6, H] = 0, 6 and H have common eigenfunctions.

Let the eigenfunction be $\begin{pmatrix}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{pmatrix} = \begin{pmatrix}
\psi_{1} \\
-\psi_{2} \\
\psi_{3} \\
-\psi_{4}
\end{pmatrix} = \begin{pmatrix}
\psi_{1} \\
0 \\
\psi_{3} \\
0
\end{pmatrix} - \begin{pmatrix}
\psi_{1} \\
\psi_{2} \\
0 \\
\psi_{4}
\end{pmatrix}$ It is easy to check that $\begin{pmatrix} \gamma_1 \\ 0 \\ \gamma_3 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} \gamma_2 \\ 0 \\ \gamma_4 \end{pmatrix}$ are eigenfunctions of 6 Substituting there in the Dirac equation substituting there in the Dirac equation and after some algebra we get, $\left(-ikc\frac{2}{2}+V\right)\begin{pmatrix} \psi_{3} \\ 0 \\ \psi_{1} \\ 0 \end{pmatrix} + mc^{2}\begin{pmatrix} \gamma_{1} \\ 0 \\ -\psi_{3} \\ 0 \end{pmatrix} = ik\frac{2}{1}\begin{pmatrix} \gamma_{1} \\ 0 \\ \psi_{3} \\ 0 \end{pmatrix}$

and

 $(-i\hbar c \frac{\partial}{\partial z} + V) \begin{pmatrix} 0 \\ -\nu_{4} \\ 0 \\ -\nu_{2} \end{pmatrix} + mc^{2} \begin{pmatrix} 0 \\ \nu_{2} \\ 0 \\ -\nu_{4} \end{pmatrix} = i\hbar \frac{\partial}{\partial t} \begin{pmatrix} \nu_{2} \\ 0 \\ \nu_{4} \end{pmatrix}$ Each of these represents two coupled / differential equations. Hive now choose 43 -> -44 $\left(-i + c \frac{\partial}{\partial z} + V\right) \begin{pmatrix} -44 \\ 0 \\ 42 \end{pmatrix} + Mc^{2} \begin{pmatrix} 42 \\ 0 \\ 44 \end{pmatrix} = i + \frac{\partial}{\partial z} \begin{pmatrix} 42 \\ 0 \\ -44 \end{pmatrix}$ Thus the one-dimensional Dirac-equation Can be written as two compled first order differential equations.

EXAMEN DE CONOCIMIENTOS DEL PROGRAMA DE DOCTORADO EN FISICA MECÁNICA ESTADÍSTICA Y TERMODINÁMICA

Enero 15 de 2019

1. Podemos modelar la dependencia de la temperatura T de la contribución $C_s(T)$ del spin a la capacidad calorífica C(T) de un sólido, con N átomos magnéticos de spin $\frac{1}{2}$, en su fase ferromagnética con temperatura de Curie T_c , mediante la expresión,

$$C_s(T) = C_m[(2T/T_c) - 1],$$

aproximación que tomamos como válida en el intervalo $\frac{1}{2}T_c < T < T_c$.

- (a) Calcule la constante C_m , igual a la máxima contribución magnética C_s a la capacidad calorífica C del sólido, explícitamente. (Ayuda: la respectiva contribución S_s , del spin, a la entropía total S del sólido puede ser útil). (15 pts.)
- (b) De manera más precisa, ¿puedes decir algo sobre el comportamiento de C_s por fuera del intervalo considerado, específicamente para temperaturas muy altas y para $T \rightarrow 0$? (5 pts.)
- 2. Una nevera se usa para congelar una cantidad adicional de agua de masa m que está en equilibrio térmico con hielo a una temperatura T_o. Siendo L el calor latente de fusión del hielo por unidad de masa, el calor extraído por el refrigerador en este proceso se aprovecha para calendar un cuerpo de capacidad calorífica C, inicialmente a la misma temperatura T_o de equilibrio de la mezcla. ¿Cuál es la mínima cantidad de calor que la nevera puede entregar a dicho cuerpo? (20 pts.)
- 3. El modelo de Ising 1-dimensional es un sistema de N spins s_i , sobre una red periódica unidimensional, que interaccionan magnéticamente solo entre los vecinos más cercanos, a través de su componente z (se asume que las interacciones a través de las componentes x, y, son despreciables, y se toma $s_{iz} = s_i$) y bajo la acción de un campo magnético externo **B**. El hamiltoniano del sistema está dado por:

$$H = -j \sum s_i s_{i+1} - B \sum s_i$$

donde las sumatorias van desde i=1 hasta i=N, el sistema es homogéneo $(j_{i,\,i+1}=-j,\,\,B_i=B)$, $s_i=\pm 1$, en las constantes j y B se absorben otras constantes como las de Planck, momento magnético, numéricas, etc., y se asumen condiciones periódicas de frontera: $s_{N+1}=s_1$.

- (a) Hallar la función de partición Z_N del sistema. Considerar el límite termodinámico, $N \rightarrow \infty$. (20 pts.)
- (b) ¿Presenta el sistema magnetización espontánea? Demostrar en el límite termodinámico. (10 pts.)
- **4.** En su teoría de los sólidos de 1906, Einstein considera los N átomos del sólido, de volumen V 3-dimensional, como un conjunto de 3N osciladores armónicos simples cuánticos, independientes, distinguibles y vibrando a una frecuencia fija ω.
- (a) Halle la función de partición Z_N como una función de la temperatura T y del volumen V. (15 pts.)
- (b) Halle la energía libre de Helmholtz. (2.5 pts.). Obtenga la entropía del sólido de Einstein. (2.5 pts.)
- (d) Encuentre el calor específico por átomo y esquematice gráficamente la curva correspondiente desde T=0 hasta T alta ambiental. ¿Cómo es su comportamiento para $T \rightarrow 0$, y cómo se compara con la realidad experimental? (10 pts.)

SOLUCIÓN:

EXAMEN DE CONOCIMIENTOS DEL PROGRAMA DE DOCTORADO EN FÍSICA MECÁNICA ESTADÍSTICA Y TERMODINÁMICA

NOMBRE: Profesor: Tose Rolando Roldan CÓDIGO: NOTA: /100

1. Podemos modelar la dependencia de la temperatura T de la contribución C_s(T) del spin a la capacidad calorífica C(T) de un sólido, con N átomos magnéticos de spin ½, en su fase ferromagnética con temperatura de Curie T_c, mediante la expresión,

$$C_s(T) = C_m[(2T/T_c) - 1],$$

aproximación que tomamos como válida en el intervalo $\frac{1}{2}T_c < T < T_c$.

- (a) Calcule la constante C_m, igual a la máxima contribución magnética C_s a la capacidad calorífica C del sólido, explícitamente. (Ayuda: la respectiva contribución S_s, del spin, a la entropía total S del sólido puede ser útil). (15 pts.)
- (b) De manera más precisa, ¿puedes decir algo sobre el comportamiento de C_s por fuera del intervalo considerado, específicamente para temperaturas muy altas y para $T \rightarrow 0$? (5 pts.)
- 2. Una nevera se usa para congelar una cantidad adicional de agua de masa m que está en equilibrio térmico con hielo a una temperatura T_o. Siendo L el calor latente de fusión del hielo por unidad de masa, el calor extraído por el refrigerador en este proceso se aprovecha para calentar un cuerpo de capacidad calorífica C, inicialmente a la misma temperatura T_o de equilibrio de la mezcla. ¿Cuál es la mínima cantidad de calor que la nevera puede entregar a dicho cuerpo? (20 pts.)
- 3. El modelo de Ising 1-dimensional es un sistema de N spins s_i , sobre una red periódica unidimensional, que interaccionan magnéticamente solo entre los vecinos más cercanos, a través de su componente z (se asume que las interacciones a través de las componentes x, y, son despreciables, y se toma $s_{iz} = s_i$) y bajo la acción de un campo magnético externo constante H_0 . El hamiltoniano del sistema está dado por:

$$\mathcal{H} = -j \Sigma s_i s_{i+1} - B \Sigma s_i$$

donde las sumatorias van desde i = 1 hasta i = N; el sistema es homogéneo $(j_{i, i+1} = -j, B_i = B)$; $s_i = \pm 1$; en las constantes j y B se absorben otras constantes como las de Planck, H_0 , momento magnético, numéricas, etc.; y se asumen condiciones periódicas de frontera: $s_{N+1} = s_1$.

- (a) Hallar la función de partición Z_N del sistema. Considerar el límite termodinámico, $N \rightarrow \infty$. (20 pts.)
- (b) ¿Presenta el sistema magnetización espontánea? Demostrar en el límite termodinámico. (10 pts.)
- 4. En su teoría de los sólidos de 1906, Einstein considera los N átomos del sólido, de volumen V 3-dimensional, como un conjunto de 3N osciladores armónicos simples cuánticos, independientes, distinguibles y vibrando a una frecuencia fija ω.
- (a) Halle la función de partición Z_N como una función de la temperatura T. (15 pts.)
- (b) Halle la energía libre de Helmholtz. Obtenga la entropía del sólido de Einstein. (5 pts.)
- (c) Encuentre el calor específico por átomo y esquematice gráficamente la curva correspondiente desde T=0 hasta T alta ambiental. ¿Cómo es su comportamiento para $T \rightarrow 0$, y cómo se compara con la realidad experimental? (10 pts.)

<u>SOLUCIÓN:</u>

1(a) El cambio en la entropía de los espines 5, se puede calcular fácilmente según el cambio en el número de estados de espín Ω_s accesibles al sistema. Este cambio en la entropía 5, también se puede calcular térmicamente mediante $C_s(T)$; de lo antenior debe surgir una relación para C_m :

Para T>Tc: Os=ZN (para espín 1/2).

Para $T = \frac{1}{2}T_c$ asumimos, aproximadamente, alineación máxima de espines: $\Omega = 1$. $\Delta S_s = k \ln S_s (C_c) - k \ln S_s (\frac{1}{2}T_c) = k \ln 2^N - k \ln 1 \Rightarrow \Delta S_s = Nk \ln 2$ (1)

Termicamente:
$$\Delta S_s = S_s(T_c) - S_s(\frac{1}{2}T_c) = \int_{\frac{1}{2}T_c}^{T_c} \frac{dQ_s}{T} = \int_{\frac{1}{2}T_c}^{T_c} \frac{C_s(T)dT}{T} = C_m \int_{\frac{1}{2}T_c}^{T_c} (2\frac{T}{T_c} - 1) \frac{dT}{T} = \frac{2C_m}{T_c} (T_c - \frac{1}{2}T_c) - C_m ln (\frac{T_c}{\frac{1}{2}T_c}) = C_m (1 - ln2)$$

(2)

I gualando (1) y (2) \Rightarrow $C_m (1 - ln2) = Nk ln2$
 \Rightarrow $C_m = \frac{ln2}{1 - ln2} Nk$
 \Rightarrow $C_m = \frac{0.693}{0.307} Nk = 2.27 Nk \frac{1}{2}$

(b) Para temperaturas may a / tas: T >> Tc, las orientaciones de los espines son totalmente aleatorias, desorden total debido a que la energía térmica kT es mucho mayor que la energia magnética de orientación de los espines, Inego en ese régimen C: = O.
Para temperaturas may bajas, específicamente: T -> O, en fase

ferromagnética, los espines se ovientan todos en una misma dirección orden total, la entropia es nula constantemente ($TLLC_1$) y $C_5=0$.

Prielo 7 agua: L

Qe = Lm

Qe = Lm

AS ≥ 0 (sistema aislado: nevera + m.a. + miquina: 2^{2} ley de la $T_{f}D$)

AS $= -\frac{mL}{T_{o}} + C\int_{T_{o}}^{f} dT = Clm \frac{T_{f}}{T_{o}} \geq 0$ We winimo: $Q_{c} = C(T_{f} - T_{o}) \Rightarrow T_{f} = \frac{Q_{c}}{C} + T_{o}$ $C_{c} \geq CT_{o} = CT_{o}$ $C_{c} \geq CT_{o} = CT_{o}$

3. y 4. : Consultar diversos textos de Mecánica Estadística con toda una variedad de enfoques y métodos de solución.